This site contains the information in Nanotechnology and my more information about Nanotechnology in today's world.
It will be crucial in our future to know what and how Nanotechnology works.
Showing posts with label solar cell. Show all posts
Showing posts with label solar cell. Show all posts

MIT - Using Water Splitting to Store Solar Energy

(NanoRealm) - In a revolutionary leap that could transform solar power from a marginal, boutique alternative into a mainstream energy source, MIT researchers have overcome a major barrier to large-scale solar power: storing energy for use when the sun doesn't shine.

Inspired by the photosynthesis performed by plants, Nocera and Matthew Kanan, a postdoctoral fellow in Nocera's lab, have developed an unprecedented process that will allow the sun's energy to be used to split water into hydrogen and oxygen gases. Later, the oxygen and hydrogen may be recombined inside a fuel cell, creating carbon-free electricity to power your house or your electric car, day or night.

The key component in Nocera and Kanan's new process is a new catalyst that produces oxygen gas from water; another catalyst produces valuable hydrogen gas. The new catalyst consists of cobalt metal, phosphate and an electrode, placed in water. When electricity — whether from a photovoltaic cell, a wind turbine or any other source — runs through the electrode, the cobalt and phosphate form a thin film on the electrode, and oxygen gas is produced.

MIT Tech TV



Combined with another catalyst, such as platinum, that can produce hydrogen gas from water, the system can duplicate the water splitting reaction that occurs during photosynthesis.

The new catalyst works at room temperature, in neutral pH water, and it's easy to set up, Nocera said. "That's why I know this is going to work. It's so easy to implement," he said.

'Just the beginning'

Currently available electrolyzers, which split water with electricity and are often used industrially, are not suited for artificial photosynthesis because they are very expensive and require a highly basic (non-benign) environment that has little to do with the conditions under which photosynthesis operates.

More engineering work needs to be done to integrate the new scientific discovery into existing photovoltaic systems, but Nocera said he is confident that such systems will become a reality.

"This is just the beginning," said Nocera, principal investigator for the Solar Revolution Project funded by the Chesonis Family Foundation and co-Director of the Eni-MIT Solar Frontiers Center. "The scientific community is really going to run with this."

Nocera hopes that within 10 years, homeowners will be able to power their homes in daylight through photovoltaic cells, while using excess solar energy to produce hydrogen and oxygen to power their own household fuel cell. Electricity-by-wire from a central source could be a thing of the past.

The project is part of the MIT Energy Initiative, a program designed to help transform the global energy system to meet the needs of the future and to help build a bridge to that future by improving today's energy systems. MITEI Director Ernest Moniz, Cecil and Ida Green Professor of Physics and Engineering Systems, noted that "this discovery in the Nocera lab demonstrates that moving up the transformation of our energy supply system to one based on renewables will depend heavily on frontier basic science."

The success of the Nocera lab shows the impact of a mixture of funding sources — governments, philanthropy, and industry. This project was funded by the National Science Foundation and by the Chesonis Family Foundation, which gave MIT $10 million this spring to launch the Solar Revolution Project, with a goal to make the large scale deployment of solar energy within 10 years.


Source: MIT News - http://web.mit.edu/newsoffice/2008/oxygen-0731.html

Japanese firm wants to transform the Moon into a giant solar power plant

(NanoRealm) - The Shimizu Corporation, a Japanese construction firm, has recently proposed a plan to harness solar energy on a larger scale than almost any previously proposed concept. Their ambitious plan involves building a belt of solar cells around the Moon’s 6,800-mile (11,000-kilometer) equator, converting the electricity to powerful microwaves and lasers to be beamed at Earth, and finally converting the beams back to electricity at terrestrial power stations. The Luna Ring concept, the company says, could meet the entire world's energy needs.


Shimizu envisions that robots would play a vital role in building the Luna Ring. Teleoperated 24 hours a day from the Earth, the robots would perform tasks such as ground leveling and assembling machines and equipment, which would be done in space before landing them on the Moon. A team of astronauts would support the robots on-site.



Due to the massive amount of solar panels and other materials needed for the project, Shimizu proposes that lunar resources should be used to the fullest extent possible. The company’s plans call for producing water by reducing lunar soil with hydrogen imported from Earth. Lunar resources could also be used to make cementing material and concrete, while solar-heat treatments could help produce bricks, glass fibers, and other structural materials needed for the project.

The Luna Ring itself would initially have a width of a few kilometers, but could be extended up to 400 kilometers wide. The electric power generated by the solar cells would be transmitted by electric cables to transmission facilities on the near side of the Moon, which is constantly facing Earth. After the electricity is converted into microwave beams and laser beams, 20-kilometer-diameter antennas would beam the power to receivers on Earth. A guidance radio beacon would ensure accurate transmission to the receivers. The energy would then be converted back to electricity and supplied to grids, or possibly converted to hydrogen for fuel or storage.



Shimizu points out that one of the biggest advantages of the Luna Ring is that, since the Moon has virtually no atmosphere, there is no bad weather or clouds that could inhibit the efficiency of the solar panels. As such, the Luna Ring achieves 24/7 continuous clean energy generation, potentially ending our reliance on limited natural resources.


Source: Shimuzu Corperation

New Energy Source from the Common Pea: Scientists Create a Solar Energy Device from a Plant Protein Structure

(NanoRealm) - If harnessing the unlimited solar power of the sun were easy, we wouldn't still have the greenhouse gas problem that results from the use of fossil fuel. And while solar energy systems work moderately well in hot desert climates, they are still inefficient and contribute only a small percentage of the general energy demand. A new solution may be coming from an unexpected source -- a source that may be on your dinner plate tonight.



"Looking at the most complicated membrane structure found in a plant, we deciphered a complex membrane protein structure which is the core of our new proposed model for developing 'green' energy," says structural biologist Prof. Nathan Nelson of Tel Aviv University's Department of Biochemistry. Isolating the minute crystals of the PSI super complex from the pea plant, Prof. Nelson suggests these crystals can be illuminated and used as small battery chargers or form the core of more efficient artificial solar cells.


New research suggests that minute crystals from peas can be illuminated and used as small battery chargers or form the core of more efficient artificial solar cells. (Credit: iStockphoto/Andrea Skjold)


Nanoscience is the science of small particles of materials and is one of the most important research frontiers in modern technology. In nature, positioning of molecules with sub-nanometer precision is routine, and crucial to the operation of biological complexes such as photosynthetic complexes. Prof. Nelson's research concentrates on this aspect.


The mighty PSI

To generate useful energy, plants have evolved very sophisticated "nano-machinery" which operates with light as its energy source and gives a perfect quantum yield of 100%. Called the Photosystem I (PSI) complex, this complex was isolated from pea leaves, crystalized and its crystal structure determined by Prof. Nelson to high resolution, which enabled him to describe in detail its intricate structure.

"My research aims to come close to achieving the energy production that plants can obtain when converting sun to sugars in their green leaves," explains Prof. Nelson.

Described in 1905 by Albert Einstein, quantum physics and photons explained the basic principles of how light energy works. Once light is absorbed in plant leaves, it energizes an electron which is subsequently used to support a biochemical reaction, like sugar production.

"If we could come even close to how plants are manufacturing their sugar energy, we'd have a breakthrough. It's therefore important to solve the structure of this nano-machine to understand its function," says Prof. Nelson, whose lab is laying the foundations for this possibility.

Since the PSI reaction center is a pigment-protein complex responsible for the photosynthetic conversion of light energy to another form of energy like chemical energy, these reaction centers, thousands of which are precisely packed in the crystals, may be used to convert light energy to electricity and serve as electronic components in a variety of different devices.

"One can imagine our amazement and joy when, upon illumination of those crystals placed on gold covered plates, we were able to generate a voltage of 10 volts. This won't solve our world's energy problem, but this could be assembled in power switches for low-power solar needs, for example," he concludes.


Adapted from American Friends of Tel Aviv University (http://www.aftau.org/)
Source: Science Daily - http://www.sciencedaily.com/releases/2010/03/100304112237.htm

Trapping Sunlight with Silicon Nanowires

(NanoRealm) - Berkeley Lab researchers have found a better way to trap light in photovoltaic cells through the use of vertical arrays of silicon nanowires. This could substantially cut the costs of solar electric power by reducing the quantity and quality of silicon needed for efficient solar panels.



Solar cells made from silicon are projected to be a prominent factor in future renewable green energy equations, but so far the promise has far exceeded the reality. While there are now silicon photovoltaics that can convert sunlight into electricity at impressive 20 percent efficiencies, the cost of this solar power is prohibitive for large-scale use. Researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab), however, are developing a new approach that could substantially reduce these costs. The key to their success is a better way of trapping sunlight.

This photovoltaic cell is comprised of 36 individual arrays of silicon nanowires featuring radial p-n junctions. The color dispersion demonstrates the excellent periodicity over the entire substrate. (Photo from Peidong Yang)


“Through the fabrication of thin films from ordered arrays of vertical silicon nanowires we’ve been able to increase the light-trapping in our solar cells by a factor of 73,” says chemist Peidong Yang, who led this research. “Since the fabrication technique behind this extraordinary light-trapping enhancement is a relatively simple and scalable aqueous chemistry process, we believe our approach represents an economically viable path toward high-efficiency, low-cost thin-film solar cells.”

Yang holds joint appointments with Berkeley Lab’s Materials Sciences Division, and the University of California Berkeley’s Chemistry Department. He is a leading authority on semiconductor nanowires - one-dimensional strips of materials whose width measures only one-thousandth that of a human hair but whose length may stretch several microns.

“Typical solar cells are made from very expensive ultrapure single crystal silicon wafers that require about 100 micrometers of thickness to absorb most of the solar light, whereas our radial geometry enables us to effectively trap light with nanowire arrays fabricated from silicon films that are only about eight micrometers thick,” he says. “Furthermore, our approach should in principle allow us to use metallurgical grade or “dirty” silicon rather than the ultrapure silicon crystals now required, which should cut costs even further.”



Yang has described this research in a paper published in the journal Nano Letters, which he co-authored with Erik Garnett, a chemist who was then a member of Yang’s research group. The paper is titled “Light Trapping in Silicon Nanowire Solar Cells.”

Generating Electricity from Sunlight

At the heart of all solar cells are two separate layers of material, one with an abundance of electrons that functions as a negative pole, and one with an abundance of electron holes (positively-charged energy spaces) that functions as a positive pole. When photons from the sun are absorbed, their energy is used to create electron-hole pairs, which are then separated at the interface between the two layers and collected as electricity.

A radial p-n junction consists of a layer of n-type silicon forming a shell around a p-type silicon nanowire core. This geometry turns each individual nanowire into a photovoltaic cell.


Because of its superior photo-electronic properties, silicon remains the photovoltaic semiconductor of choice but rising demand has inflated the price of the raw material.

Furthermore, because of the high-level of crystal purification required, even the fabrication of the simplest silicon-based solar cell is a complex, energy-intensive and costly process.

Yang and his group are able to reduce both the quantity and the quality requirements for silicon by using vertical arrays of nanostructured radial p-n junctions rather than conventional planar p-n junctions. In a radial p-n junction, a layer of n-type silicon forms a shell around a p-type silicon nanowire core. As a result, photo-excited electrons and holes travel much shorter distances to electrodes, eliminating a charge-carrier bottleneck that often arises in a typical silicon solar cell. The radial geometry array also, as photocurrent and optical transmission measurements by Yang and Garrett revealed, greatly improves light trapping.

“Since each individual nanowire in the array has a p-n junction, each acts as an individual solar cell,” Yang says. “By adjusting the length of the nanowires in our arrays, we can increase their light-trapping path length.”

While the conversion efficiency of these solar nanowires was only about five to six percent, Yang says this efficiency was achieved with little effort put into surface passivation, antireflection, and other efficiency-increasing modifications.

“With further improvements, most importantly in surface passivation, we think it is possible to push the efficiency to above 10 percent,” Yang says.

Combining a 10 percent or better conversion efficiency with the greatly reduced quantities of starting silicon material and the ability to use metallurgical grade silicon, should make the use of silicon nanowires an attractive candidate for large-scale development.

As an added plus Yang says, “Our technique can be used in existing solar panel manufacturing processes.”



Provided by: Provided by Lawrence Berkeley National Laboratory (http://www.lbl.gov/)
Source: http://www.physorg.com/news186850199.html