This site contains the information in Nanotechnology and my more information about Nanotechnology in today's world.
It will be crucial in our future to know what and how Nanotechnology works.
Showing posts with label silicon. Show all posts
Showing posts with label silicon. Show all posts

Trapping Sunlight with Silicon Nanowires

(NanoRealm) - Berkeley Lab researchers have found a better way to trap light in photovoltaic cells through the use of vertical arrays of silicon nanowires. This could substantially cut the costs of solar electric power by reducing the quantity and quality of silicon needed for efficient solar panels.



Solar cells made from silicon are projected to be a prominent factor in future renewable green energy equations, but so far the promise has far exceeded the reality. While there are now silicon photovoltaics that can convert sunlight into electricity at impressive 20 percent efficiencies, the cost of this solar power is prohibitive for large-scale use. Researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab), however, are developing a new approach that could substantially reduce these costs. The key to their success is a better way of trapping sunlight.

This photovoltaic cell is comprised of 36 individual arrays of silicon nanowires featuring radial p-n junctions. The color dispersion demonstrates the excellent periodicity over the entire substrate. (Photo from Peidong Yang)


“Through the fabrication of thin films from ordered arrays of vertical silicon nanowires we’ve been able to increase the light-trapping in our solar cells by a factor of 73,” says chemist Peidong Yang, who led this research. “Since the fabrication technique behind this extraordinary light-trapping enhancement is a relatively simple and scalable aqueous chemistry process, we believe our approach represents an economically viable path toward high-efficiency, low-cost thin-film solar cells.”

Yang holds joint appointments with Berkeley Lab’s Materials Sciences Division, and the University of California Berkeley’s Chemistry Department. He is a leading authority on semiconductor nanowires - one-dimensional strips of materials whose width measures only one-thousandth that of a human hair but whose length may stretch several microns.

“Typical solar cells are made from very expensive ultrapure single crystal silicon wafers that require about 100 micrometers of thickness to absorb most of the solar light, whereas our radial geometry enables us to effectively trap light with nanowire arrays fabricated from silicon films that are only about eight micrometers thick,” he says. “Furthermore, our approach should in principle allow us to use metallurgical grade or “dirty” silicon rather than the ultrapure silicon crystals now required, which should cut costs even further.”



Yang has described this research in a paper published in the journal Nano Letters, which he co-authored with Erik Garnett, a chemist who was then a member of Yang’s research group. The paper is titled “Light Trapping in Silicon Nanowire Solar Cells.”

Generating Electricity from Sunlight

At the heart of all solar cells are two separate layers of material, one with an abundance of electrons that functions as a negative pole, and one with an abundance of electron holes (positively-charged energy spaces) that functions as a positive pole. When photons from the sun are absorbed, their energy is used to create electron-hole pairs, which are then separated at the interface between the two layers and collected as electricity.

A radial p-n junction consists of a layer of n-type silicon forming a shell around a p-type silicon nanowire core. This geometry turns each individual nanowire into a photovoltaic cell.


Because of its superior photo-electronic properties, silicon remains the photovoltaic semiconductor of choice but rising demand has inflated the price of the raw material.

Furthermore, because of the high-level of crystal purification required, even the fabrication of the simplest silicon-based solar cell is a complex, energy-intensive and costly process.

Yang and his group are able to reduce both the quantity and the quality requirements for silicon by using vertical arrays of nanostructured radial p-n junctions rather than conventional planar p-n junctions. In a radial p-n junction, a layer of n-type silicon forms a shell around a p-type silicon nanowire core. As a result, photo-excited electrons and holes travel much shorter distances to electrodes, eliminating a charge-carrier bottleneck that often arises in a typical silicon solar cell. The radial geometry array also, as photocurrent and optical transmission measurements by Yang and Garrett revealed, greatly improves light trapping.

“Since each individual nanowire in the array has a p-n junction, each acts as an individual solar cell,” Yang says. “By adjusting the length of the nanowires in our arrays, we can increase their light-trapping path length.”

While the conversion efficiency of these solar nanowires was only about five to six percent, Yang says this efficiency was achieved with little effort put into surface passivation, antireflection, and other efficiency-increasing modifications.

“With further improvements, most importantly in surface passivation, we think it is possible to push the efficiency to above 10 percent,” Yang says.

Combining a 10 percent or better conversion efficiency with the greatly reduced quantities of starting silicon material and the ability to use metallurgical grade silicon, should make the use of silicon nanowires an attractive candidate for large-scale development.

As an added plus Yang says, “Our technique can be used in existing solar panel manufacturing processes.”



Provided by: Provided by Lawrence Berkeley National Laboratory (http://www.lbl.gov/)
Source: http://www.physorg.com/news186850199.html

Silicon-coated nanonets could build a better lithium-ion battery

(NanoRealm) - A tiny scaffold-like titanium structure of Nanonets coated with silicon particles could pave the way for faster, lighter and longer-lasting Lithium-ion batteries, according to a team of Boston College chemists who developed the new anode material using nanotechnology.

Frame (a) shows a schematic of the Nanonet, a lattice structure of titanium disilicide (TiSi2) coated with silicon (Si) particles to form the active component for Lithium-ion storage. A microscopic view (b) of the silicon coating on the Nanonets. The crystallinity (c) of the Nanonet core and the Si coating. The crystallinity of TiSi2 and Si (highlighted by the dotted red line) is shown in a lattice-resolved image (d) from transmission electron microscopy. Credit: Nano Letters
The web-like Nanonets developed in the lab of Assistant Professor of Chemistry Dunwei Wang offer a unique structural strength, more surface area and greater conductivity, which produced a charge/re-charge rate five to 10 times greater than typical Lithium-ion anode material, a common component in batteries for a range of consumer electronics, according to findings published in the current online edition of the American Chemical Society journal Nano Letters.

In addition, the Nanonets proved exceptionally durable, showing a negligible drop-off in capacity during charge and re-charge cycles. The researchers observed an average of 0.1% capacity fade per cycle between the 20th and the 100th cycles.



"As researchers pursue the next generation of re-chargeable Lithium-ion battery technology, a premium has been placed on increased power and a greater battery life span," said Wang. "In that context, the Nanonet device makes a giant leap toward those two goals and gives us a superior anode material."

Lithium-ion batteries are commonly used in consumer electronics devices. This type of rechargeable battery allows Lithium ions to move from the anode electrode to the cathode when in use. When charged, the ions move from cathode back to the anode.

The structure and conductivity of the Nanonets improved the ability to insert and extract Lithium ions from the particulate silicon coating, the team reported. Running at a charge/discharge rate of 8,400 milliamps per gram (mA/g) - which is approximately five to 10 times greater than similar devices - the specific capacity of the material was greater than 1,000 milliamps-hour per gram (mA-h/g). Typically, laptop Lithium-ion batteries are rated anywhere between 4,000 and 12,000 mA/h, meaning it would only take between four and 12 grams of the Nanonet anode material to achieve similar capacity.

Wang said the capability to preserve the crystalline titanium silicon core during the charge/discharge process was the key to achieving the high performance of the Nanonet anode material. Additional research in his lab will examine the performance of the Nanonet as a cathode material.



News adapted from PhyOrg.com

More information: View the Nano Letters paper at http://pubs.acs.org/doi/abs/10.1021/nl903345f

Provided by Boston College (web)

Made in IBM Labs: IBM Scientists Demonstrate World's Fastest Graphene Transistor


In a just-published paper in the magazine Science, IBM (NYSE: IBM) researchers demonstrated a radio-frequency graphene transistor with the highest cut-off frequency achieved so far for any graphene device - 100 billion cycles/second (100 GigaHertz).


This accomplishment is a key milestone for the Carbon Electronics for RF Applications (CERA) program funded by DARPA, in an effort to develop next-generation communication devices.
The high frequency record was achieved using wafer-scale, epitaxially grown graphene using processing technology compatible to that used in advanced silicon device fabrication.

"A key advantage of graphene lies in the very high speeds in which electrons propagate, which is essential for achieving high-speed, high-performance next generation transistors," said Dr. T.C. Chen, vice president, Science and Technology, IBM Research. "The breakthrough we are announcing demonstrates clearly that graphene can be utilized to produce high performance devices and integrated circuits."

Graphene is a single atom-thick layer of carbon atoms bonded in a hexagonal honeycomb-like arrangement. This two-dimensional form of carbon has unique electrical, optical, mechanical and thermal properties and its technological applications are being explored intensely.

Uniform and high-quality graphene wafers were synthesized by thermal decomposition of a silicon carbide (SiC) substrate. The graphene transistor itself utilized a metal top-gate architecture and a novel gate insulator stack involving a polymer and a high dielectric constant oxide. The gate length was modest, 240 nanometers, leaving plenty of space for further optimization of its performance by scaling down the gate length.
It is noteworthy that the frequency performance of the graphene device already exceeds the cut-off frequency of state-of-the-art silicon transistors of the same gate length (~ 40 GigaHertz). Similar performance was obtained from devices based on graphene obtained from natural graphite, proving that high performance can be obtained from graphene of different origins. Previously, the team had demonstrated graphene transistors with a cut-off frequency of 26 GigaHertz using graphene flakes extracted from natural graphite.

Source: IBM (home;news)