This site contains the information in Nanotechnology and my more information about Nanotechnology in today's world.
It will be crucial in our future to know what and how Nanotechnology works.
Showing posts with label Medicine. Show all posts
Showing posts with label Medicine. Show all posts

Metal Nano-Particles Suspend Human Cells In Magnetic Scaffolding For Easy Organ Manufacturing

(NanoRealm) - While scientists have become rather adept at transforming generic skin cells into specialized organ cells, crafting the organs themselves has proven far more difficult. Since the 3-D architecture of most organs is as important to their function as their cellular makeup, 2-D cell cultures are not very useful for building a replacement heart from scratch. To solve that problem, most organ makers create a scaffolding for the cells to grow on.




For a team of researchers at Rice University, even a biodegradable scaffolding wasn't good enough. By injecting cells with a metallic gel, the researchers have succeeded in suspending cultured cells in a three-dimensional magnetic field. With this magnetic scaffolding, organs can be grown in the right shape, and with no foreign material.

The researchers used bacteriophages, special viruses that inject themselves into cells, to insert a polymer iron oxide gel into brain cancer cells. Once the cells absorbed the magnetic gel, the Rice scientists levitated the cells in a weak magnetic field. And since cells naturally live in a 3-D space, not a 2-D culture, the brain cancer cells actually behaved more normally while suspended in the magnetic field then they did when in a cell culture.
The obvious next step involved programming detailed magnetic fields that float stem cells in the exact spots needed for them to grow into a full organ. To that end, the researchers have sold the technology to the company n3D Bioscences. Whether or not this process leaves your replacement organ magnetic, and how that will affect getting through airports, remains to be seen.


Source: PopSci - http://www.popsci.com/science/article/2010-03/metal-nano-particles-suspend-human-cells-magnetic-scaffolding-organ-manufactoring

Nanotechnology may tap into your mind

(NanoRealm) - Telecommunications researchers in Japan are attempting to create electronic sensors that can not only receive information from the brain, but could manipulate our neural pathways.

While the concept might conjure science-fiction images of half-human, half-machine cyborgs, Dr Keiichi Torimitsu of Nippon Telegraph and Telephone (NTT), says the research is more likely to provide relief for people with Parkinson's disease or overcoming stroke.

Torimitsu presented his team's work on the development of bionic, or bio-mimetic, brain sensors at this week's International Conference on Nanoscience and Nanotechnology (ICONN) in Sydney.

"Establishing connections between the brain and electrical instruments is important for understanding how the brain works and for controlling neural activity," says Torimitsu, who heads NTT's Molecular and Bioscience Group.

"To develop some kind of devices or interfaces with the brain that would make it possible to transmit our information, sending it through the telecommunication pathways to another person or device such as a computer - that is the goal."

A neural interface would be a significant achievement in the rapidly advancing realm of bionic technology, which includes devices such as the cochlear ear implant.



Nano-connections

Torimitsu is working on creating a nano-scaled implant comprising a nano-electrode coated with an artificial membrane that mimics the receptor proteins found on the surface of brain cells, such as glutamate and GABA receptors -involved in increasing and inhibiting brain activity.

Interactions between the receptors and neurotransmitters naturally generate electrical activity. Carefully placed nano-electrodes receive the neurotransmissions providing an instant, accurate electrical reflection of what is occurring, which can be read by an external device.

Torimitsu hopes it would not only monitor activity, but also interact in the connections between neurons known as the synapses.

Ideally, he says, the device would use a biological energy source such as glucose.

"If we could use those proteins on a nano-electrode to generate electrical responses, we could achieve the bio-mimicry of responses."

Torimitsu admits there are a number of hurdles to overcome such as adverse immune responses and possible faults with the machinery. He says at this stage it's unlikely that healthy people would volunteer to have the devices implanted.

But, Torimitsu says it has great medical potential for stroke sufferers and people with Parkinson's disease where brain activity could be controlled.

Australian connections

The Japanese team is working with several researchers in Australia to refine the concept and devise applications for the technology.

Torimitsu has been working with Dr Simon Koblar of the University of Adelaide's Centre for Molecular Genetics of Development, looking at how to apply the technology for the treatment of stroke sufferers.

He is also about to commence working with the University of Wollongong's Intelligent Polymer Research Institute, which works at the forefront of bionics.

Director of the Institute, Professor Gordon Wallace, says one of the goals is to improve the interface with cochlear implant.

He says Torimitsu's work - a meeting of telecommunications technology and biological knowledge - shows why it makes it a very exciting time to be doing such research.

"People are starting to realise all around the world that there are lots of tools that we can use that we already have at our disposal to make this field progress very quickly," says Wallace.


Source: ABC News (http://www.abc.net.au/science/articles/2010/02/25/2830261.htm)

Fighting influenza with nanomaterials

(NanoRealm) - Montana State University scientists are researching the use of nanomaterials to develop a new way of fighting influenza and other respiratory infections caused by viruses.

If it works in humans the way it does in mice, people will prepare for a respiratory viral assault by inhaling an aerosol spray containing tiny protein cages that will activate an immune response in their lungs. This activated immune state will be good against any respiratory virus and last more than a month. People won't have to wait for scientists to analyze new viruses, develop vaccines against them, then distribute and administer the vaccine.
"It's like having a fire department at your house before the fire. If a fire starts, you don't have to call them and wait for them to arrive. They are already there," said Jim Wiley, assistant research professor in the Department of Veterinary Molecular Biology in MSU's College of Agriculture.




Wiley has been working on the protein cage nanomaterial approach for more than 2 1/2 years. A recent $275,000 grant from the National Institutes of Allergy and Infectious Diseases will allow his research team to continue another two years. The grant was made possible through the American Recovery and Reinvestment Act of 2009.

The hollow protein cages he uses in his research are prepared in MSU's Center for Bio-Inspired Nanomaterials, Wiley said. These protein cages are made by a heat-loving bacterium, and they are similar to one which the Center for Bio-Inspired Nanomaterials recently isolated from a bacterium that thrives in the thermal features of Yellowstone National Park. The cages are hollow spheres that carry nothing on the outside. They are so small that they have to be magnified 50,000 times to be seen under an electron microscope. A human hair is 7,000 to 10,000 times wider than these cages.


Abby Leary and Jim Wiley work with an aerosolization chamber used to innoculate the lung.

The cages alone are enough to set off an immune response in the lungs, Wiley said. If the approach works in humans, people who have prepared their lungs with nanomaterials might sniffle for a couple of days instead of being hospitalized. Rather than missing work for a few days with an influenza infection, they may only need to sleep a few extra hours at night.

"You would be able to prepare an entire population for an imminent respiratory viral infection, like the swine influenza infections that we just experienced," Wiley said.

Wiley and 10 co-authors from MSU, Utah State University and the University of Rochester Medical Center have already published a scientific paper on the nanomaterial approach, which is based upon activating "inducible Bronchus-Associated Lymphoid Tissue," or iBALT, in the lung. This iBALT is a naturally occurring tissue that is made in the lung as part of the normal immune response to an infection. The paper showed that the presence of iBALT accelerated the recovery of infected mice without causing lung damage or other harmful side effects. The acceleration effect of the treatment disappeared gradually after one month. The paper about it ran in the September 2009 edition of PLoS One, an online scientific journal from the Public Library of Science.

MSU co-authors of the paper were Laura Richert, Steve Swain, Ann Harmsen, Mark Jutila and Allen Harmsen in the Department of Veterinary Molecular Biology; Trevor Douglas, Chris Broomell and Mark Young in the Center for Bio-Inspired Nanomaterials. Douglas and Broomell are also in the Department of Chemistry and Biochemistry. Young is also in the Department of Plant Sciences and Plant Pathology.

In the current project, Wiley said he and his team are testing this iBALT-based therapy in animal models, whose response to influenza infection is close to that seen in humans. He doesn't know when this iBALT-based approach will be tested in humans, but said, "It certainly is promising as a treatment right at the moment."

He added that nanomaterials could be generated much faster than vaccines.
Wiley's current research team consists of Richert and four lab technicians: Abby Leary, Rebecca Pulman, Soo Han and Mark McAlpine. Richert is a doctoral student from Idaho.

"I have been excited to work on it," Richert said about the project. "It has been interesting from a non-traditional immunological standpoint."
Wiley said if iBALT-based therapies had been in place last year, people would have been better prepared for H1N1.

"If we had been able to develop a state of immune preparedness in the lungs or a partial activation state in the lungs, we could have at least given people some degree of protection," Wiley said.

MSU Technology Transfer Officer Nick Zelver said MSU has a patent on using protein cages to trigger the rapid production of lymphoid tissue in the lung. The technology could be used to prevent or treat a range of pulmonary diseases including influenza. It might counter bioterrorism threats, such as airborne microbes. The protein cage technology is available for licensing from MSU. To see all MSU technologies available for licensing, go to http://tto.montana.edu/technologies.


Source: Montana State University

Adapted from: http://www.nanowerk.com/news/newsid=14948.php

Attacking Cancer Cells with Hydrogel Nanoparticles

(NanoRealm) - One of the difficulties of fighting cancer is that drugs often hit other non-cancerous cells, causing patients to get sick. But what if researchers could sneak cancer-fighting particles into just the cancer cells? Researchers at the Georgia Institute of Technology and the Ovarian Cancer Institute are working on doing just that. In the online journal BMC Cancer they detail a method that uses hydrogels - less than 100 nanometers in size - to sneak a particular type of small interfering RNA(siRNA) into cancer cells. Once in the cell the siRNA turns on the programmed cell death the body uses to kill mutated cells and help traditional chemotherapy do it’s job.




Many cancers are characterized by an over abundance of epidermal growth factor receptors (EGFR). When the EGFR level in a cell is elevated it tells the cell to replicate at a rapid rate. It also turns down apoptosis, or programmed cell death.

“With our technique we’re inhibiting EGFR’s growth, with small interfering RNA. And by inhibiting it’s growth, we’re increasing the cells’s apoptotic function. If we hit the cell with chemotherapy at the same time, we should be able to kill the cancer cells more effectively,” said John McDonald, professor at the School of Biology at Georgia Tech and chief research scientist at the Ovarian Cancer Institute.

Hydrogel Nanoparticles - An artistic rendering of hydrogel nanoparticles.(Credit: Andrew Lyon)
Small interfering RNA is good at shutting down EGFR production, but once inside the cell siRNA has a limited life span. Keeping it protected inside the hydrogel nanoparticles allows them to get into the cancer cell safely and acts as a protective barrier around them. The hydrogel releases only a small amount of siRNA at a time, ensuring that while some are out in the cancer cell doing their job, reinforcements are held safely inside the nanoparticle until it’s time to do their job.

“It’s like a Trojan horse,” said L. Andrew Lyon, professor in the School of Chemistry and Biochemistry at Georgia Tech. “We’ve decorated the surface of these hydrogels with a ligand that tricks the cancer cell into taking it up. Once inside, the particles have a slow release profile that leaks out the siRNA over a timescale of days, allowing it to have a therapeutic effect.”

Cells use the messenger RNA (mRNA) to generate proteins, which help to keep the cell growing. Once the siRNA enters the cell, it binds to the mRNA and recruits proteins that attack the siRNA-mRNA complex. But the cancer cell's not finished; it keeps generating proteins, so without a continuous supply of siRNA, the cell recovers. Using the hydrogel to slowly release the siRNA allows it to keep up a sustained attack so that it can continue to interrupt the production of proteins.

“We’ve shown that you can get knock down out to a few days time frame, which could present a clinical window to come in and do multiple treatments in a combination chemotherapy approach,” said Lyon.

“The fact that this system is releasing the siRNA slowly, without giving the cell time to immediately recover, gives us much better efficiency at killing the cancer cells with chemotherapy,” added McDonald.

Previous techniques have involved using antibodies to knock down the proteins.
“But oftentimes, a mutation may arise in the targeted gene such that the antibody will no longer have the effect it once did, thereby increasing the chance for recurrence,” said McDonald.

The team used hydrogels because they’re non-toxic, have a relatively slow release rate, and can survive in the body long enough to reach their target.

“It’s a well-defined architecture that you’re using the intrinsic porosity of that material to load things into, and since our particles are about 98 percent water by volume, there’s plenty of internal volume in which to load things,” said Lyon.

Currently, the tests have been shown to work in vitro, but the team will be initiating tests in vivo shortly.


Provided by Georgia Institute of Technology

The Georgia Institute of Technology is one of the nation's premier research universities. Ranked seventh among U.S. News & World Report's top public universities, Georgia Tech's more than 20,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and minority engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.


Source: PhyOrg.com (web)

New nanoparticle could improve cancer detection, drug delivery


(NanoRealm)- University of Florida scientists have developed a new nanoparticle that could improve cancer detection and drug delivery. The particle, called a “micelle” and made up of a cluster of molecules called aptamers, easily recognizes tumors and binds strongly to them. It also has properties that allow it to easily get inside cells for intracellular studies and drug delivery.

“That is important, because we could attach a drug to the aptamer so that the drug could get into a cell,” said Yanrong Wu, who recently completed her doctoral research at UF. Wu was the first author of a paper describing the findings in January in the Proceedings of the National Academy of Sciences entitle "DNA aptamer–micelle as an efficient detection/delivery vehicle toward cancer cells".


In allowing more targeted treatment of diseased cells, the micelles would help reduce damage to healthy cells even with large doses of chemotherapy. Current methods often destroy normal cells while trying to kill tumor cells.

In biological studies, molecules termed “probes” have properties that enable them to detect other molecules or organisms of interest, such as viruses. Compared with existing probes such as antibodies, the aptamers offer advantages in terms of ease of production and identification, faster response time and much lower molecular weight.

Aptamers, the building blocks of the micelles, are short single strands of DNA that can recognize other molecules based on certain chemical conformation.


In previous drug delivery tests, aptamers on their own could only attach limited drug molecules and sometimes could not effectively recognize tumor cells, so UF researchers re-engineered the molecule to improve its usefulness in biomedical studies in the watery environment inside the body.

They effectively turned the aptamer molecules into a molecular recognition and drug delivery system combination that escorts water-insoluble compounds such as drugs into cells by encapsulating them inside a water-soluble structure.

To do so, the team, led by Weihong Tan, the V.T. and Louise Jackson professor of chemistry at the College of Liberal Arts and Sciences and a professor of physiology and functional genomics in the UF College of Medicine, attached a “water-hating” — or hydrophobic — tail to the aptamers. The new molecules cluster together to form a micelle by tucking their water-hating tails together, exposing only the “water-loving” — or hydrophilic — portion of the structure. In that way, the micelle can shield water-insoluble agents such as drugs within its center, and help usher them into cells.

“It was kind of a stealth situation where the cell sees only the hydrophilic part, but inside, the drug is in the hydrophobic part,” said Nick Turro, the William P. Schweitzer professor of chemistry at Columbia University, who was not involved in the study. “This opens a number of avenues that were unavailable before.”
In tests that mimic physiological conditions, the micelles were more sensitive than the molecular probes alone. The micelle bound more strongly to target cells. That could lead to easier and earlier detection of biomarkers of disease such as cancer.

“When you are talking about diagnosis, these aptamers in micelles will have a much higher signal than individual aptamers, so we may be able to detect very small amounts of the substance we’re testing for,” said Tan, also a member of the UF Genetics Institute, the UF Shands Cancer Center and the Moffitt Cancer Center and Research Institute.

The micelle structures also might prove useful to more accurately determine how much diseased tissue is left behind after chemotherapy or surgery.

Now that the researchers have demonstrated the micelle’s ability to bind in simulated physiological conditions, the next step will be to test it in real tumors.

The National Institutes of Health and The Florida Biomedical Research Program supported the research. Other investigators include Haipeng Liu, Kwame Sefah and Ruowen Wang.


Source: University of Florida (news)

Nanomaterials May Help Fight Cancer


Scientists from the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago Medical Center are shaking up the world of materials science and cancer research on the cover of the February 2010 issue of the journal Nature Materials.

Brain cancer is notoriously difficult to treat with standard cancer-fighting methods, so scientists have been looking outside standard medicine and into nanomaterials as a treatment alternative.

"Our mission is to develop advanced 'smart' materials with unique properties," said Elena Rozhkova, a nanoscientist with Argonne's Center for Nanoscale Materials. "These efforts are directed to the improvement of the national quality of life, including creating novel medical technologies."

A team of scientists, including Rozhkova, Dong-Hyum Kim, Valentyn Novosad, Tijana Rajh and Samuel Bader from Argonne, and Maciej Lesniak and Ilya Ulasov from the University of Chicago Brain Tumor Center, developed a technique that uses gold-plated iron-nickel microdiscs connected to brain-cancer-seeking antibodies to fight cancer. The microdiscs are an example of a nanomagnetic material and can be used to probe cell mechanics and activate mechanosensitive ion channels, as well as to advance cancer therapies.
The discs posses a spin-vortex ground state and sit dormant on the cancer cell until a small alternating magnetic field is applied and the vortices shift, creating an oscillation. The energy from the oscillation is transferred to the cell and triggers apoptosis, or "cell suicide."


Since the antibodies are attracted only to brain cancer cells, the process leaves surrounding healthy cells unharmed. This makes them unlike traditional cancer treatment methods, such as chemotherapy and radiation, which negatively affect both cancer and normal healthy cells.


Watch cancer cells self-destruct after being tagged with nanodiscs and exposed to a light magnetic field.

"We are very excited about this melding of materials and life sciences, but we are still in the very early research stages," materials scientist Valentyn Novosad said. "We are planning to begin testing in animals soon, but we are several years away from human trials. Everything is still experimental."

Along with continued testing and research of the treatment, scientists also have to examine any possible side effects that have been so far unseen in the laboratory.

"The use of nanomaterials for cancer treatment is not a new concept, but the ability to kill the cells without harming surrounding healthy cells has incredible potential," Rozhkova said. "Such a topic can only be approached with the expertise of markedly differing disciplines such as physics, chemistry, biology and nanotechnology and can make a great impact in important areas of science and modern advanced technologies."

Source: Argone National Laboratory; Science Daily


Information of Argone National Laboratory:
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Nanotechnology in the Fight Against Cancer



A world-renowned medical researcher discusses the key role that nanotechnology has begun to play in the detection and treatment of cancer in an article that will appear in the March 2010 edition of Mechanical Engineering magazine.

Mauro Ferrari, Ph.D., explains how advanced nanotech-based therapeutic agents possess characteristics that can effectively exploit the unique mechanical properties of cancer lesions and treat the various forms of the disease locally.

According to Ferrari, professor and chairman of the Department of Nanomedicine and Biomedical Engineering at The University of Texas Health Science Center, some engineered nano-particles have demonstrated the capability to deliver drugs only to areas affected by disease, in the process protecting healthy cells and reducing debilitating side effects.


An important insight in understanding how to treat cancer, Ferrari says, is that aspects of the disease such as malignancy, metastasis, and angiogenesis (which is the growth of new arteries to feed tumors) are mechanical phenomena pertaining to the motion and transport of blood and cells. Nanotechnology-based therapies currently under experimentation for cancer treatment take advantage of some of these mechanical properties to find new ways to attack tumors.

This constitutes a new field that Ferrari and his medical colleagues refer to as “transport oncophysics.”

Formulations of drugs made from nano-particles have shown the ability to overcome biological barriers -- for example, by leaking through the blood vessels inside a tumor -- to concentrate on localized cancers. Because of this, nanotechnology-based drugs may be used in smaller doses and are less likely to disperse to healthy parts of the body. Ferrari and his team at The University of Texas also have designed nano-particles called Multi-Stage Vectors, which offer great promise in targeting individual cancer cells.

“We are on the brink of a new era in cancer treatment,” asserts Ferrari in the forthcoming article, titled “Infernal Mechanism.”

“The level of specificity that can be achieved through the use of the conceptual model of cancer as a mechanical disease – and through the power of the mechanical engineering design process – will result in greater therapeutic efficacy with reduced side effects,” he concludes.

Mauro Ferrari will speak on Feb. 8 at the First Global Congress on Nano-engineering for Medicine and Biology. The conference, sponsored by ASME, will open on Feb. 7 at the JW Marriott Houston, in Houston, Texas.

---
Above information was sourced from ASME.

About ASME
ASME helps the global engineering community develop solutions to real world challenges. Founded in 1880 as the American Society of Mechanical Engineers, ASME is a not-for-profit professional organization that enables collaboration, knowledge sharing and skill development across all engineering disciplines, while promoting the vital role of the engineer in society. ASME codes and standards, publications, conferences, continuing education and professional development programs provide a foundation for advancing technical knowledge and a safer world.