This site contains the information in Nanotechnology and my more information about Nanotechnology in today's world.
It will be crucial in our future to know what and how Nanotechnology works.

New Era to Come: T-Shirt replaces battery: Fiber-based electrochemical micro-supercapacitor

(NanoRealm) - Will we soon be plugging our mobile phone into our t-shirt instead of putting in a battery? This vision is not totally out of reach: the first steps in this direction have already been taken.

Now a team led by Zhong Lin Wang at the Georgia Institute of Technology (Atlanta, USA) and Jong Min Kim of Samsung Electronics in South Korea is introducing a prototype for a flexible energy storage device that can be worked into textiles. As the scientists report in the journal Angewandte Chemie, this supercapacitor is made of a very special arrangement of zinc oxide nanowires grown on conventional fibers.


Although smaller, lighter components are constantly being developed, most devices for energy generation and storage are much too bulky and heavy for increasingly miniaturized electronic devices of the future. Supercapacitors are an interesting alternative to batteries and rechargeable batteries for energy storage. They can be recharged almost endlessly and extremely fast; however, previous examples have not been flexible or light enough.

The research team has now developed a prototype for a high-efficiency fiber-based electrochemical micro-supercapacitor that uses zinc oxide nanowires as electrodes. The substrate for one of the electrode is a flexible, fine plastic wire; for the other electrode it is a fiber made of Kevlar. Kevlar is the material used to make bulletproof vests. The researchers were able to grow zinc oxide nanowires on each of these substrates. Additional coatings with materials like gold and manganese oxide could further improve the charge capacitance. Using tweezers, the researchers then wrapped each of the plastic wires with a Kevlar fiber. This assembly was then embedded in a solid gel electrolyte that separates the two electrodes and allows for the necessary charge transport. A bundle of these fibers could be processed to form a thread.


Zinc oxide has special advantages over conventional supercapacitor materials,: it can be grown on any desired substrate in any form at low temperature (below 100 °C) and it is both biocompatible and environmentally friendly.

A particularly intriguing application would be the use of these new charge-storage media in combination with flexible fiber nanogenerators, which Wang and his team have previously developed. The wearer’s heartbeat and steps, or even a light wind, would be enough to move the piezoelectric zinc oxide nanowires in the fibers, generating electrical current.

In the form of a "power shirt" such a system could deliver enough current for small electronic devices, such as mobile phones or small sensors like those used to warn firemen of toxins.

For More information: Zhong Lin Wang, Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage, Angewandte Chemie International Edition,
http://dx.doi.org/10.1002/anie.201006062

MIT - Using Water Splitting to Store Solar Energy

(NanoRealm) - In a revolutionary leap that could transform solar power from a marginal, boutique alternative into a mainstream energy source, MIT researchers have overcome a major barrier to large-scale solar power: storing energy for use when the sun doesn't shine.

Inspired by the photosynthesis performed by plants, Nocera and Matthew Kanan, a postdoctoral fellow in Nocera's lab, have developed an unprecedented process that will allow the sun's energy to be used to split water into hydrogen and oxygen gases. Later, the oxygen and hydrogen may be recombined inside a fuel cell, creating carbon-free electricity to power your house or your electric car, day or night.

The key component in Nocera and Kanan's new process is a new catalyst that produces oxygen gas from water; another catalyst produces valuable hydrogen gas. The new catalyst consists of cobalt metal, phosphate and an electrode, placed in water. When electricity — whether from a photovoltaic cell, a wind turbine or any other source — runs through the electrode, the cobalt and phosphate form a thin film on the electrode, and oxygen gas is produced.

MIT Tech TV



Combined with another catalyst, such as platinum, that can produce hydrogen gas from water, the system can duplicate the water splitting reaction that occurs during photosynthesis.

The new catalyst works at room temperature, in neutral pH water, and it's easy to set up, Nocera said. "That's why I know this is going to work. It's so easy to implement," he said.

'Just the beginning'

Currently available electrolyzers, which split water with electricity and are often used industrially, are not suited for artificial photosynthesis because they are very expensive and require a highly basic (non-benign) environment that has little to do with the conditions under which photosynthesis operates.

More engineering work needs to be done to integrate the new scientific discovery into existing photovoltaic systems, but Nocera said he is confident that such systems will become a reality.

"This is just the beginning," said Nocera, principal investigator for the Solar Revolution Project funded by the Chesonis Family Foundation and co-Director of the Eni-MIT Solar Frontiers Center. "The scientific community is really going to run with this."

Nocera hopes that within 10 years, homeowners will be able to power their homes in daylight through photovoltaic cells, while using excess solar energy to produce hydrogen and oxygen to power their own household fuel cell. Electricity-by-wire from a central source could be a thing of the past.

The project is part of the MIT Energy Initiative, a program designed to help transform the global energy system to meet the needs of the future and to help build a bridge to that future by improving today's energy systems. MITEI Director Ernest Moniz, Cecil and Ida Green Professor of Physics and Engineering Systems, noted that "this discovery in the Nocera lab demonstrates that moving up the transformation of our energy supply system to one based on renewables will depend heavily on frontier basic science."

The success of the Nocera lab shows the impact of a mixture of funding sources — governments, philanthropy, and industry. This project was funded by the National Science Foundation and by the Chesonis Family Foundation, which gave MIT $10 million this spring to launch the Solar Revolution Project, with a goal to make the large scale deployment of solar energy within 10 years.


Source: MIT News - http://web.mit.edu/newsoffice/2008/oxygen-0731.html

New enzyme nanotech process is developed

(NanoRealm) - A U.S. chemical engineer says he’s developed a way to make all-natural personal care products and purer pharmaceuticals in the laboratory.

Kansas State University Professor Peter Pfromm, in collaboration with former visiting doctoral student Kerstin Wurges, said he has engineered a way to use enzymes to efficiently catalyze chemical reactions to create such products as scents for perfumes or to avoid the introduction of inactive ingredients in drugs.

He said the process is essentially an enzyme-covered nanoparticle of fumed silica. Since enzymes come from natural organisms, the end product can be billed as natural, Pfromm said.
He said enzymes also can be used to make a purer form of pharmaceuticals, noting the active molecules in many drugs often come with an inactive twin. However, enzymes are very effective at only producing the active version of the molecule.

“Most of the time the inactive twin molecule is harmless, but there is a trend toward making more pure pharmaceuticals,” Pfromm said. “Enzymes are exceedingly good at taking reactants and making them into only one of the versions, not both. They are supremely selective in this way; chemical catalysts are not.”

Wurges, listed as a co-inventor on the process patent, worked with Pfromm on devising the preparation and did much of the lab work. She is presently pursing her doctorate at the Julich Research Center in Germany.


Source: Ethopian Review (http://www.ethiopianreview.com/news/153650)

Japanese firm wants to transform the Moon into a giant solar power plant

(NanoRealm) - The Shimizu Corporation, a Japanese construction firm, has recently proposed a plan to harness solar energy on a larger scale than almost any previously proposed concept. Their ambitious plan involves building a belt of solar cells around the Moon’s 6,800-mile (11,000-kilometer) equator, converting the electricity to powerful microwaves and lasers to be beamed at Earth, and finally converting the beams back to electricity at terrestrial power stations. The Luna Ring concept, the company says, could meet the entire world's energy needs.


Shimizu envisions that robots would play a vital role in building the Luna Ring. Teleoperated 24 hours a day from the Earth, the robots would perform tasks such as ground leveling and assembling machines and equipment, which would be done in space before landing them on the Moon. A team of astronauts would support the robots on-site.



Due to the massive amount of solar panels and other materials needed for the project, Shimizu proposes that lunar resources should be used to the fullest extent possible. The company’s plans call for producing water by reducing lunar soil with hydrogen imported from Earth. Lunar resources could also be used to make cementing material and concrete, while solar-heat treatments could help produce bricks, glass fibers, and other structural materials needed for the project.

The Luna Ring itself would initially have a width of a few kilometers, but could be extended up to 400 kilometers wide. The electric power generated by the solar cells would be transmitted by electric cables to transmission facilities on the near side of the Moon, which is constantly facing Earth. After the electricity is converted into microwave beams and laser beams, 20-kilometer-diameter antennas would beam the power to receivers on Earth. A guidance radio beacon would ensure accurate transmission to the receivers. The energy would then be converted back to electricity and supplied to grids, or possibly converted to hydrogen for fuel or storage.



Shimizu points out that one of the biggest advantages of the Luna Ring is that, since the Moon has virtually no atmosphere, there is no bad weather or clouds that could inhibit the efficiency of the solar panels. As such, the Luna Ring achieves 24/7 continuous clean energy generation, potentially ending our reliance on limited natural resources.


Source: Shimuzu Corperation

Bank note nanotechnology based on butterfly wings could beat forgers

(NanoRealm) - Banknotes could become as beautiful as butterfly wings one day using technology borrowed from nature.


British scientists have found a way to mimic the iridescent colours of tropical butterflies, created by light bouncing off microscopic wing structures.

The research could be used to make banknotes and credit cards that are visually striking and harder to forge.

“These artificial structures could be used to encrypt information in optical signatures on banknotes to protect them against forgery,” said Mathias Kolle, a PhD student at the University of Cambridge.

“In future we could see structures based on butterflies’ wings shining from a £10 note or even our passports.”

The Cambridge team studied the Indonesian peacock, or swallowtail, butterfly — Papilio blumei — whose vivid green-and-blue wings have an intricate surface pattern.

They made identical copies of the structures using nanotechnology.

Recreating the colours of beetles, butterflies and moths has previously proved elusive because of the technical challenge of precisely shaping materials on such a small scale.


“We have unlocked one of nature’s secrets and combined this knowledge with state-of-the-art nanofabrication to mimic the intricate optical designs found in nature,” Mr Kolle said.

“Although nature is better at self-assembly than we are, we have the advantage that we can use a wider variety of artificial, custom-made materials to optimise our optical structures.”

The research is published in the journal Nature Nanotechnology.

The Indonesian peacock may use the security potential of its wing structure to encrypt itself, the scientists believe.

“The shiny green patches on this tropical butterfly’s wing scales are a stunning example of nature’s ingenuity in optical design,” Mr Kolle said.

“Seen with the right optical equipment these patches appear bright blue but with the naked eye they appear green.

“This could explain why the butterfly has evolved this way of producing colour. If its eyes see fellow butterflies as bright blue, while predators only see green patches in a green tropical environment, then it can hide from predators at the same time as remaining visible to members of its own species.”


TimesOnline UK: (http://www.timesonline.co.uk/tol/news/uk/article7140807.ece)

Nanodots Breakthrough May Lead To 'A Library On One Chip'

(NanoRealm) - A researcher at North Carolina State University has developed a computer chip that can store an unprecedented amount of data - enough to hold an entire library's worth of information on a single chip. The new chip stems from a breakthrough in the use of nanodots, or nanoscale magnets, and represents a significant advance in computer-memory technology.


"We have created magnetic nanodots that store one bit of information on each nanodot, allowing us to store over one billion pages of information in a chip that is one square inch," says Dr. Jay Narayan, the John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and author of the research.
The breakthrough is that these nanodots are made of single, defect-free crystals, creating magnetic sensors that are integrated directly into a silicon electronic chip. These nanodots, which can be made uniformly as small as six nanometers in diameter, are all precisely oriented in the same way - allowing programmers to reliably read and write data to the chips.

The chips themselves can be manufactured cost-effectively, but the next step is to develop magnetic packaging that will enable users to take advantage of the chips - using something, such as laser technology, that can effectively interact with the nanodots.

The research, which was funded by the National Science Foundation, was presented as an invited talk April 7 at the 2011 Materials Research Society Spring Meeting in San Francisco.


More information: “Self Assembly of epitaxial magnetic nanostructures”, Author: J. Narayan, North Carolina State University, Presented: April 7, 2010, 2011 MRS Spring Meeting, San Francisco.


Source: http://www.physorg.com/news191668936.html